Table 1. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement coefficients (Å² × 10³)

U_{eq} is defined as one third of the trace of the orthogonalized					
U_{ij} tensor.					

	x	у	z	U_{eq}
C(1)	- 374 (4)	1453 (3)	5791 (2)	32 (1)
O(1)	1375 (3)	1917 (2)	5471 (1)	47 (1)
N(2)	-1712 (3)	89 (3)	5508 (1)	37 (1)
N(2a)	-1380 (4)	- 765 (3)	4660 (1)	48 (1)
O(2a)	- 2833 (5)	-1787 (3)	4471 (2)	76 (1)
O(2b)	269 (4)	-458 (3)	4188 (1)	63 (1)
C(3)	- 3857 (4)	- 83 (3)	6017 (2)	41 (1)
C(4)	- 3835 (4)	1405 (3)	6712 (2)	35 (1)
N(5)	- 1592 (3)	2117 (3)	6560 (1)	37 (1)
N(5a)	- 866 (3)	3460 (3)	7095 (2)	46 (1)
O(5a)	-2236 (3)	4058 (3)	7641 (1)	57 (1)
O(5b)	1079 (4)	3913 (3)	6996 (2)	91 (1)

Table 2. Bond lengths (Å) and bond angles (°)

C(1)—O(1) C(1)—N(5) N(2)—C(3) N(2a)—O(2b) C(4)—N(5) N(5a)—O(5a) O(1)—C(1)—N(2) N(2)—C(1)—N(5) C(1)—N(2)—C(3) N(2)—N(2a)—O(2a) O(2a)—N(2a)—O(2b) C(3)—C(4)—N(5)	1.185 (3) 1.396 (3) 1.461 (3) 1.201 (3) 1.457 (3) 1.210 (3) 128.9 (2) 102.6 (2) 115.3 (2) 114.5 (2) 126.3 (2) 102.4 (2)	$\begin{array}{c} C(1) - N(2) \\ N(2) - N(2a) \\ N(2a) - O(2a) \\ C(3) - C(4) \\ N(5) - N(5a) \\ N(5a) - O(5b) \end{array}$ $\begin{array}{c} O(1) - C(1) - N(5) \\ C(1) - N(2) - N(2a) \\ N(2a) - N(2a) - O(2b) \\ N(2) - C(3) - O(2b) \\ N(2) - C(3) - O(4) \\ C(1) - N(5) - C(4) \end{array}$	1-396 (3) 1-377 (3) 1-210 (3) 1-527 (4) 1-368 (3) 1-212 (3) 1-229 (2) 119-7 (2) 119-2 (2) 103-2 (2) 115.8 (2)
$\begin{array}{l} N(2) & - N(2a) & - O(2a) \\ O(2a) & - N(2a) & - O(2b) \\ C(3) & - C(4) & - N(5) \\ C(1) & - N(5) & - N(5a) \\ N(5) & - N(5a) & - O(5a) \\ O(5a) & - N(5a) & - O(5b) \end{array}$	114·5 (2) 126·3 (2) 102·4 (2) 123·4 (2) 116·0 (2) 126·2 (3)	$\begin{array}{l} N(2)-N(2a)-O(2b)\\ N(2)-C(3)-C(4)\\ C(1)-N(5)-C(4)\\ C(4)-N(5)-N(5a)\\ N(5)-N(5a)-O(5b) \end{array}$	119·2 (2) 103·2 (2) 115·8 (2) 120·5 (2) 117·8 (2)

Structure solved by direct methods. The leastsquares refinement used the full-matrix program provided with the MicroVAX version of the SHELXTL system (Sheldrick, 1980). $\sum w(|F_o| - |F_c|)^2$ minimized where $w = 1/[\sigma^2(|F_o|) + g(F_o)^2]$, g = 0.00023, secondary isotropic extinction from $F_c^* = F_c/[1.0 + 0.002(p)F_o^2/\sin 2\theta]^{0.25}$ where p = 0.018 (2). There were 126 parameters refined: atom coordinates for all atoms, anisotropic temperature factors for non-H atoms and isotropic temperature factors for H atoms; $(\Delta/\sigma)_{max} = 0.01$, R = 0.032, wR = 0.045, S =2.09, final difference Fourier excursions 0.27 and -0.21 e Å⁻³. Atomic scattering factors from International Tables for X-ray Crystallography (1974).[†] Atom numbering for Tables 1 and 2, atom coordinates, bond distances and bond angles, follows that shown in Fig. 1.

Related literature. The structure of 1,4-dinitroglycouril (DINGU) has been reported (Boileau, Wimmer, Gilardi, Stinecipher, Gallo & Pierrot, 1988).

This work was supported in part by contract No. N00173-86-M-R828 from the ONR Mechanics Division.

References

- BOILEAU, J., WIMMER, E., GILARDI, R., STINECIPHER, M., GALLO, R. & PIERROT, M. (1988). Acta Cryst. C44, 696–699.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- SHELDRICK, G. M. (1980). SHELXTL80. An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data. Univ. of Götttingen, Federal Republic of Germany.

Acta Cryst. (1990). C46, 704-706

Structure of the Product of Addition of 7-Oxabicyclo[2.2.1]hept-5-ene-2-carbonitrile and Benzonitrile Oxide

BY S. GARCÍA-GRANDA, E. PÉREZ-CARREÑO AND F. GÓMEZ-BELTRÁN

Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Julián Clavería S/N, 33006 Oviedo, Spain

(Received 12 June 1989; accepted 24 October 1989)

Abstract. 5-Phenyl-3,10-dioxa-4-azatricyclo[$5.2.1.0^{2.6}$]dec-4-en-8-one, C₁₃H₁₁NO₃, M_r = 229·23, orthorhombic, *Pna2*₁, a = 5.8737 (4), b = 17.1877 (12), c =10.6692 (10) Å, V = 1077.1 (1) Å³, Z = 4, $D_x =$ 1.41 g cm⁻³. Mo $K\alpha$ radiation (graphite-crystal monochromator, $\lambda = 0.71073$ Å), μ (Mo $K\alpha$) = 0.95 cm⁻¹, F(000) = 480, T = 293 K. Final conventional R factor = 0.025 for 688 unique reflections and © 1990 International Union of Crystallography

0108-2701/90/040704-03\$03.00

[†] Lists of structure factors, anisotropic thermal parameters and H-atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52317 (8 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

197 variables. The structure was solved by direct methods. Distances and angles are normal. The angle between the least-squares plane through the phenyl ring and the five-membered ring is $10.9 (2)^{\circ}$. The $C_3-C_2-C_1$, $O_{21}-C_2-C_1$ and $O_{21}-C_2-C_3$ angles are 105.5(5), 126.5(5) and $127.6(5)^{\circ}$ respectively. The C2–O21 bond distance is 1.219(6) Å.

Experimental. Colorless crystal, $0.07 \times 0.07 \times$ 0.21 mm. Mo $K\alpha$ radiation was used with a graphitecrystal monochromator on a Nonius CAD-4 singlecrystal diffractometer ($\lambda = 0.71073$ Å). Unit-cell dimensions were from the angular settings of 25 reflections with $20 < \theta < 30^{\circ}$. Space group *Pna2*₁ from the systematic absences. 7658 reflections were measured, *hkl* range (-5, -24, -10) to (8, 24, 15), theta limits ($0 < \theta < 30^{\circ}$). $\omega - 2\theta$ scan technique and a variable scan rate with a maximum scan time of 60 s per reflection. Intensity was checked by monitoring three standard reflections every 60 min. Final drift correction factors were between 0.99 and 1.02. On all reflections profile analysis was performed (Lehmann & Larsen, 1974; Grant & Gabe, 1978); an empirical absorption correction was applied, using ψ scans (North, Phillips & Mathews, 1968), $\mu(Mo K\alpha) =$ 0.95 cm^{-1} (correction factors in the range 0.97 to 1.00). Symmetry equivalent reflections averaged, R_{int} $= \sum (I - \langle I \rangle) / \sum I = 0.046$, resulting in 2121 unique reflections of which only 688 were observed with I > $3\sigma(I)$. Lorentz and polarization corrections were applied and the data reduced to $|F_o|$ values. The structure was solved by directs methods, using the program SHELXS86 (Sheldrick, 1985).

Isotropic least-squares refinement, using SHELX (Sheldrick, 1976), converged to R = 0.068. At this stage an additional empirical absorption correction was applied (Walker & Stuart, 1983). Maximum and minimum absorption correction factors were 1.07 and 0.44 respectively. Further anisotropic refinements followed by a difference Fourier synthesis allowed the location of all the hydrogen atoms.

During the final stages of the refinement the positional parameters and the anisotropic thermal parameters of the non-hydrogen atoms were refined. All hydrogens were refined isotropically. The final conventional agreement factors were R = 0.025 and wR = 0.023 for the 688 'observed' reflections and 197 variables. The function minimized was $\sum w(F_o - F_c)^2$, $w = 1/[\sigma^2(F_o) + 0.00020F_o^2]$ with $\sigma(F_o)$ from counting statistics. The maximum shift over e.s.d. ratio in the last full-matrix least-squares cycle was less than 0.04. The final difference Fourier map showed no peaks higher than $0.075 \text{ e} \text{ Å}^{-3}$ and deeper than $-0.070 \text{ e}^{\text{A}^{-3}}$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974). The plot was made with program PLUTO (Motherwell, 1976). Geometrical calculations were Table 1. Fractional positional and thermal $(Å^2 \times 10^2)$ parameters, with e.s.d.'s in parentheses

$U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \mathbf{a}_j.$						
	x	у	Ζ	U_{eq}		
Cl	0.310 (1)	0.1635 (3)	0.7771 (7)	3.9 (2)		
C2	0.355 (1)	0.1641 (3)	0.9171 (6)	4.2 (2)		
021	0.5287 (8)	0.1853 (2)	0.9692 (5)	5.7 (1)		
C3	0.149 (1)	0.1249 (4)	0.9761 (7)	4.8 (2)		
C4	0.026 (1)	0.1008 (3)	0.8573 (6)	4.1 (2)		
041	0.064 (6)	0 1663 (2)	0.7752	4.5 (1)		
C5	0.154 (9)	0.0363 (3)	0.7916 (6)	3.6 (2)		
051	0.032 (6)	0.0051 (2)	0.6850 (5)	5.3 (1)		
C6	0-358 (1)	0.0804 (3)	0.7344 (7)	3.7 (2)		
N61	0.137 (8)	0.0297 (3)	0.5727 (6)	5.0 (2)		
C6′	0.316(1)	0.0693 (3)	0.5972 (5)	3.6 (2)		
C61	0.4536 (9)	0.1038 (3)	0.4977 (6)	3.5 (2)		
C62	0.378 (1)	0.1028 (4)	0.3731 (7)	4.8 (3)		
C63	0.511 (1)	0.1378 (3)	0.2816 (7)	5.8 (3)		
C64	0.716(1)	0.1733 (4)	0.3093 (7)	5.6 (3)		
C65	0·790 (1)	0·1746 (3)	0.4326 (7)	5.1 (2)		
C66	0.660 (1)	0.1387 (3)	0.5242 (7)	4.1 (2)		

Table 2.	Bond	lengths	(Å)	and	bond	angles	(°),	with
		e.s.d.'s	in p	aren	theses			

CIC2	1.517 (8)	O51N61	1.412 (5
Cl041	1.446 (6)	C6C6'	1.496 (7
Cl—C6	1.525 (7)	N61—C6'	1.280 (6
C2O21	1.219 (6)	C6'C61	1.460 (7)
C2-C3	1.519 (8)	C61C62	1.401 (7
C3-C4	1.517 (7)	C61C66	1.382 (7
C4-041	1.445 (5)	C62C63	1.388 (7)
C4C5	1.513 (7)	C63C64	1.383 (8
C5-051	1.446 (5)	C64—C65	1.385 (8
C5—C6	1.544 (6)	C65—C66	1.386 (8)
C2-CL-041	100.7 (5)		101.5 (4)
$C_2 - C_1 - C_4$	105.6 (4)		112.5 (5)
$C_2 - C_1 - C_0$	103.0 (4)		101.4 (5)
C_{1}^{-} C_{1	102-1 (4)	C_{1}	110.2 (4)
$C_1 - C_2 - C_2$	120.5 (5)	C6-C6'-N61	110.2 (4)
021 - 02 - 03	103.5 (5)	C6 - C6 - R01	174.7 (0)
$C_2 - C_2 - C_3$	08.0 (5)	N61-C6'-C61	1247 (5)
$C_2 - C_3 - C_4$	102.7 (4)	C6'	121.4 (5)
$C_{2} - C_{4} - C_{5}$	1027(4)	C6'-C61-C62	120.9 (5)
01 - 04 - 05	10.4(3) 102.3(4)	C62	120.6 (5)
$C_1 = C_4 = C_5$	102° (4)	C61C62C63	118.0 (6)
$C_{1} = -C_{1} = -C_{4}$	112.0 (4)	C62C63C64	122.1 (6)
C4-C5-C6	112.9(4)	C62C63C64	112.0 (7)
051_05_06	102-1 (4)	C64_C65_C66	110.7 (7)
C5_051_N61	104.7 (4)	C61 - C65 - C65	122.2 (0)
	107.7(4)		122.7 (0

Fig. 1. PLUTO (Motherwell, 1976) diagram showing the molecular geometry and the atomic numbering.

made with *PARST* (Nardelli, 1983). Final positional and thermal parameters are given in Table 1.* Molecular geometry data are collected in Table 2. Fig. 1 shows the atomic numbering scheme.

Related literature. 7-Oxabicyclo[2.2.1]hept-5-en-2one (7-oxanorbornenone) reacts with benzonitrile oxide to produce a mixture of regioisomers in a 65:35 ratio (Plumet, Escobar, Manzano, Arjona, Carrupt & Vogel, 1986). The regio- and stereochemistry of both adducts was tentatively assigned from the spectral data of the pure isomers, including NOE experiments. The present report describes the confirmation of the structure of the major isomer by X-ray diffraction.

* Lists of structure amplitudes, anisotropic thermal parameters, H-atom parameters, distances and angles involving H atoms, least-squares-planes' data and principal torsion angles have been deposited with British Library Document Supply Centre as Supplementary Publication No. SUP 52362 (15 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. We thank Professor J. Plumet, Organic Chemistry (Madrid), for providing us with the crystals and for helpful discussions.

References

GRANT, D. F. & GABE, E. J. (1978). J. Appl. Cryst. 11, 114-120.

- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- LEHMANN, M. S. & LARSEN, F. K. (1974). Acta Cryst. A30, 580-584.
- MOTHERWELL, W. D. S. (1976). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England. NARDELLI, M. (1983). Comput. Chem. 7, 95–98.
- North, A.C.T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- PLUMET, J., ESCOBAR, G., MANZANO, C., ARJONA, O., CARRUPT, P. A. & VOGEL, P. (1986). *Heterocycles*, 24, 1535–1538.
- SHELDRICK, G. M. (1976). SHELX. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRÜGER, & R. GODDARD, pp. 175–189. Oxford: Clarendon Press.
- WALKER, N. & STUART, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1990). C46, 706-708

Structures of 1,3,5-Trinitro-2-oxo-1,3,5-triazacyclohexane (I) and 1,4-Dinitro-2,5-dioxo-1,4-diazacyclohexane (II)

BY RICHARD GILARDI, JUDITH L. FLIPPEN-ANDERSON AND CLIFFORD GEORGE

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375, USA

(Received 20 June 1989; accepted 24 October 1989)

Abstract. (I) $C_3H_4N_6O_7$, $M_r = 236.10$, orthorhombic, Pbnm (non-standard setting of Pnma), a = 5.988 (1), b = 10.052 (2), c = 13.492 (2) Å, V = 812.1 (2) Å³, Z = 4, $D_x = 1.932$ Mg m⁻³, λ (Cu K α) = 1.54178 Å, μ $= 1.63 \text{ mm}^{-1}$, F(000) = 480, T = 295 K, final R =0.034, wR = 0.047 for 516 observed reflections. (II) $C_4H_4N_4O_6$, $M_r = 208.2$, orthorhombic, C2cb (nonstandard setting of Aba2), a = 6.152(1), b =12.961 (2), c = 9.248 (1) Å, V = 737.4 (2) Å³, Z = 4, $D_x = 1.838 \text{ Mg m}^{-3}$, λ (Cu K α) = 1.54178 Å, $\mu =$ 1.50 mm^{-1} , F(000) = 416, T = 295 K, final R =0.037, wR = 0.045 for 538 observed reflections. Both compounds have only half a molecule per asymmetric unit; (I) lies on a mirror plane and (II) on a twofold rotation axis. In (I) the six-membered ring is a chair flattened at the keto end while in (II) it has a twisted conformation. The nitro groups are pyramidal. In (I) the out-of-plane tilt angles (between the C-N bond and the coincident C-N-C plane) for the nitro groups are 44.6 and 25.1° . In (II) this value

is $22 \cdot 2^{\circ}$. Close N···O intermolecular approaches occur in both molecules [2.94 Å in (I) and 2.82 Å in (II)].

Experimental. Both materials were synthesized by Clifford Coon of Lawrence Livermore Laboratory, Livermore, California. (I), colorless, $0.12 \times 0.22 \times$ 0.10 mm data crystal. Automated Nicolet R3m diffractometer with incident-beam graphite monochromator; 25 centered reflections within $30 \le 2\theta \le$ 76° used for determining cell parameters. Data corrected for Lorentz and polarization effects, but not for absorption. $2\theta_{max} = 115^{\circ}$; range of $hkl: 0 \le h \le 6$, $-10 \le k \le 0$, $0 \le l \le 14$, standards, 204, 040, 004, monitored every 100 reflections with random variation of 3.0% over data collection, $\theta/2\theta$ mode, scan width $[2\theta(K\alpha_1) - 1.0]$ to $[2\theta(K\alpha_2) + 1.0]^{\circ}$, scan rate a function of count rate (6° min⁻¹ minimum, 30° min⁻¹ maximum); 733 reflections measured, 586 unique, $R_{int} = 0.028$, 516 observed $[F_o > 3\sigma(F_o)]$. (II), © 1990 International Union of Crystallography

0108-2701/90/040706-03\$03.00